Notes

Contribution from the Department of Chemistry, Washington State University, Pullman, Washington **99163**

Correlation between Structure and Circular Dichroism in **Ethylenediaminetetraacetatocobaltate(Ii1)** and Related Complexes

William T. Jordan and J. Ivan Legg*

Received October 4, **1973 AIC30720D**

Figure **1.** The **MA** isomers of [Co(EDTA)]-, [Co(EDDDA)]-, and [Co(EDDS)]- and **AAA-8-cis-[Co(EDDA)ox]-,**

Rose and Neal have reported the synthesis and characterization of a novel ligand, (S, S) -ethylenediamine- N, N' -dissuccinate (EDDS), and its complexes^{1,2} (EDDS contains two (S) -aspartic acid units). The ligand, which is an analog of EDTA, exhibits absolute stereospecificity on coordination to $Co(III)^1$ as has been confirmed by an X-ray crystal structure determination.³ Although $[Co(EDTA)]$ ⁻ and $[Co(EDDS)]$ ⁻ are structurally similar (Figure 1), the CD spectra are distinctly different.^{1,4} Significantly, the isomers with the same absolute configuration of chelate rings^{3,5} give dominant CD peaks of opposite sign. It has been suggested that these major changes are due principally to differences in chelate ring size.⁶ The EDDS complex has two five-membered rings and two six-membered rings whereas all four amino acid rings of the EDTA complex are five membered (Figure 1). The complex $[Co(\text{EDDDA})]$ ⁻¹ $(EDDDA = ethylene diamine-N,N'.diacatate-N.N'.di-3$ propionate) shares characteristics of both $[Co(EDTA)]$ ⁻ and $[Co(EDDS)]$ ⁻ (Figure 1). Like $[Co(EDDS)]$ ⁻ it contains two five-membered and two six-membered amino acid chelate rings. Unlike $[Co(EDDS)]$, however, and like $[Co(EDTA)]$, the amino acid rings branch from the donor nitrogen atoms rather than from asymmetric carbon atoms. The CD spectrum of $[Co(EDDDA)]^{-7}$ is very similar in shape to that of $[Co(EDDS)]$, and it was partly on the basis of this similarity that the absolute configuration of $[Co(\text{EDDDA})]$ ⁻ was assigned.⁷

A source of dissymmetry which has not been considered in [Co(EDDS)]⁻, however, is that associated with the asymmetric nitrogens. Recent studies have shown that the asymmetric nitrogens in closely related chelates make large contributions to the d-d rotatory strengths of the metal ion. 8^{-10} Maricondi and Douglas⁸ found that when methyl and ethyl groups were substituted for the amine hydrogens of *s-cis-* [Co(EDDA)L] (Figure l), the intensities of the CD peaks were diminished by large values, as much as $\Delta \epsilon = 3.5$.^{8,9} It was argued⁸ that the vicinal effect due to the chiral nitrogens is large for the secondary amines of s-cis-EDDA but very small for the tertiary amines of N-substituted s-cis-EDDA so that the difference

-
- (1) J. A. Neal and N. J. Rose, *Inorg. Chem.*, 7, 2405 (1968).
(2) J. A. Neal and N. J. Rose, *Inorg. Chem.*, 12, 1226 (1973).
(3) L. M. Woodward, M.S. Thesis, University of Washington, 1970.
(4) B. E. Douglas, R. A. Haine
- *Chem., 2,* **1194 (1963); C.** W. Van Saun and B. **E.** Douglas, *ibid,* **8, 1145 (1969).**
- **(5)** T. **E.** MacDermott and **A.** M. Sargeson, *Aust. J. Chem.,* **16, 334 (1963).**
	- **(6) J. I.** Legg and **J. A.** Neal., Znorg. *Chem.,* **12, 1805 (1973).**

(7) W. Byers and B. E. Douglas, *Inorg. Chem.*, 11, 1470 (1972).

(8) C. W. Maricondi and B. **E.** Douglas, Znorg. *Chem.,* **11, 688 (1972).**

(9) W. T. Jordan and B. E. Douglas, *Inorg. Chem.*, 12, 403 (1973). **(10) C.** W. Maricondi and C. Maricondi, Znorg. *Chem.,* **12, 1524 (1973).**

between the CD curves is due primarily to the vicinal effect. The results of a subsequent study¹⁰ support this argument and indicate that the smallest vicinal contribution to the circular dichroism occurs for methyl-substituted nitrogens.

The stereochemical arrangement about the nitrogens of $[Co(EDDS)]$ ⁻ is very similar to that of s-cis- $[Co(EDDA)ox]$ ⁻ (Figure 1). Therefore, the two complexes might be expected to give rise to similar vicinal effects. In order to evaluate the N-vicinal effect of [Co(EDDS)]- we have prepared the *N*methyl (MEDDS) and N , N' -dimethyl (DMEDDS) derivatives of that complex. Conclusions regarding the role of chelate ring size in the differences among the CD spectra of [Co- $[EDTA]$, $[Co(EDDS)]$, and $[Co(EDDDA)]$ ⁻ can only be regarded as tentative until the contributions from the asymmetric nitrogens of $[Co(EDDS)]$ ⁻ are known.

Experimental Section

(S,S)-Ethylenediaminedisuccinic Acid, MEDDS and DMEDDS. Sodium hydroxide, **2.4** g **(0.060** mol), was added to **4.1** g (0.010 mol) of H,EDDS' in **75** ml of water and the mixture was stirred until **all** solid had dissolved. The solution was transferred to a bomb which was sealed after adding **3.2** g **(0.023** mol) of methyl iodide. The mixture was stirred for *5* hr in a water bath at **75"** and then cooled to room temperature. The solution was adjusted to pH 7 with HCl and then stirred for *ca.* **10** min with excess AgCl to precipitate all iodide. The filtrate contained a mixture of EDDS, Preparation **of** the N-Methyl and N,N'-Dimethyl Derivatives **of** MEDDi, **and** DMEDDS.

Preparation of Sodium ((S,S)-N-Methylethylenediaminedi**succinato)cobaltate(III),** Na [Co(MEDDSj], and Sodium *((S,S)-N,N'* **dimethylethylenediaminedisuccinato)cobaltate(III),** Na [Co(DMEDDS)]. CoCl,*6H,O **(2.4** g, **0.010** mol) was added to the above mixture of ligands. The solution was neutralized with NaOH and **2 g** of blood charcoal was added. A stream of air was passed through the mixture for *ca.* **12** hr. The charcoal was removed by filtration and the filtrate was concentrated to a volume of *ca. 5* ml in a rotary evaporator. The solution was eluted on a column **(4** X **90** cm) of Sephadex **G-15** with chloroform-saturated water to separate NaCl from the violet band containing Co(II1) complexes. The violet fraction was then chromatographed on a column **(4** x **38** cm) of **200400** mesh Dowex 1-X8 anionexchange resin in the chloride form. This material separated cleanly into three violet bands during elution with **0.0064** *M* NaCl over a 2-week period. Each fraction was collected, concentrated, and passed through a Sephadex column, as described above, to remove NaC1. Each solution was then evaporated to dryness under vacuum. The solid, in each case, was transferred to **a** filter with the aid of ethanol and washed with ethanol and acetone. It was then dried, first on the filter and then under vacuum at **80"** for **4 hr.** For fraction 1, $[Co(DMEDDS)]$: $\Delta \epsilon_{604} = +0.18$, $\Delta \epsilon_{540} =$ -1.88 , $\Delta \epsilon_{380} = +0.56$. For fraction 2, $[Co(\text{MEDDS})]$: $\Delta \epsilon_{604} =$ $+0.39, \Delta \epsilon_{542} = -2.17, \Delta \epsilon_{380} = +0.83.$ For fraction 3, $[Co(\text{EDDS})]$: $\Delta \epsilon_{.607} = +0.39$, $\Delta \epsilon_{.548} = -2.31$, $\Delta \epsilon_{.390} = +0.95$. The values obtained for fraction 3 agree with those previously reported for [Co(EDDS)]^{-1,6}

Anal. Fraction 1: Calcd for $\text{Na}[\text{Co}(C_{12}H_{16}N_2O_8)] \cdot H_2O$: C, **34.62;** H, **4.36; N, 6.73.** Found: C, **34.31;** H, **4.16; N, 6.54.** Fraction 2: Calcd for $\text{Na}[\text{Co}(C_1, H_{14}N_2O_8)] \cdot H_2O$: C, 32.81; H, 4.01; N, **6.96.** Found: **C, 32.70;** H, **4.01;** N, **6.88.** Fraction **3:** Calcd for **Na[Co(C,,Hl,N,0,)J~1.5H,0:** C, **30.24;** H, **3.55;** N, **7.05.** Found:

Figure 2. The visible absorption and circular dichroism spectra of Na [Co(EDDS)], Na [Co(MEDDS)], and Na [Co(DMEDDS)].

C, 30.28, H, 3.69; N, 7.18. Elemental analyses were obtained from the Materials Chemistry Section, Washington State University.

spectrophotometer using a tungsten lamp. The CD spectra were recorded on a JASCO ORD-UVS instrument equipped with a xenon source and CD attachment and calibrated with d -10-camphorsulfonic acid (Aldrich, recrystallized from acetic acid and dried over P_2O_5 at *ca.* 80° under vacuum); $\Delta \epsilon_{290} = +2.34$. The spectra were obtained at room temperature at concentrations of *ca*. 10⁻³ *M*. Spectra. The absorption spectra were measured on a Cary 14

Results and Discussion

The CD and visible absorption spectra of $[Co(EDDS)]$, [Co(MEDDS)]-, and [Co(DMEDDS)]- are shown in Figure *2.* Like $EDDS_{1,3}$ the N-methylated derivatives show absolute stereospecificity. The chromatographic behavior of the Co- (111) complexes indicated only one geometrical isomer in each case. That $[Co(MEDDS)]$ ⁻ and $[Co(DMEDDS)]$ ⁻ have the same absolute configuration as $[Co(EDDS)]$ ^{$-$} (six-membered rings in the plane, Figure 1 ³ is apparent from the similarity of the CD spectra. The alternate arrangement (five-membered rings in the plane) would require the opposite chiral configuration of chelate rings and thus near-enantiomeric (to [Co- $(EDDS)|\vec{\ })$ CD curves.

between those of the EDDS and DMEDDS complexes. Whereas very large changes occur in the CD spectra of *s-cis-*EDDA complexes on N-methyl substitution, the changes in the CD of $[Co(EDDS)]$ ⁻ are small. If the major differences between the CD spectra of $[Co(EDDS)]$ ⁻ (Figure 2) and $[Co (EDTA)$ ⁻ (Figure 3) were due to the N-vicinal effect, then the spectrum of the DMEDDS complex (Figure 3) would be expected to be quite similar to that of $[Co(EDTA)]$ ⁻ since the nitrogens in these two compounds have similar immediate environments (three alkyl groups bonded to each nitrogen in [Co(EDTA)]⁻ and [Co(DMEDDS)]⁻ compared to two alkyl groups and one hydrogen in $[Co(EDDS)]$). To the contrary, the CD spectrum of $[Co(DMEDDS)]$ ⁻ is similar to that of $[Co-$ (EDDS)]- (Figure 2) and quite different from that of [Co- $(EDTA)^{-}$ (Figure 3). As expected the CD curve for [Co(MEDDS)]⁻ is intermediate

Once the N-vicinal effect has been accounted for, the remaining circular dichroism is the sum of the configurational effect due to the dissymmetric arrangement of chelate rings, the C-vicinal effect due to the asymmetric carbon atoms at which the five- and six-membered chelate rings join, and the conformational effect. The C-vicinal and conformational contributions to the CD of $[Co(EDDS)]$ ⁻ should be quite similar to those observed for cobalt(III)- (S) -aspartate com-

Figure 3. The circular dichroism spectra of $[Co(EDTA)]$ ⁻ (from ref 4), [Co(EDDDA)]- (from ref *7),* and [Co(DMEDDS)]-. The CD curves correspond to the isomers shown in Figure 1.

plexes since EDDS contains two (S)-aspartic acid units. For the complex $[Co(NH₃)₃(S-asp)]⁺$, the C-vicinal and conformational effects associated with S-asp are the only sources of rotatory strength. It is, therefore, possible to obtain an estimate of the combined vicinal-conformational effect in [Co(EDDS)]⁻ (allowing for a change in ligand field strength) by doubling the CD observed for $[Co(NH₃)₃(S-asp)]⁺.¹¹$ By this procedure, it is found that the C-vicinal-conformational effect is both too small and of the wrong sign to account for the large differences between the CD curves of [Co(EDDS)] and [Co(EDTA)]-.

Having eliminated the N-vicinal, C-vicinal, and conformational effects as structural sources responsible for the major differences between the CD curves for $[Co(EDDS)]$ ⁻ and $[Co(EDTA)]$, only the configurational effect remains. It can be seen from Figure 1 that the arrangement of chelate rings is the same for the two complexes. However, [Co- $(EDDS)^{-}$ and $[Co(EDTA)]^{-}$ should have different dissymmetric distributions of donor atoms due to the different constraints imposed on the donor atoms by the chelate rings. Specifically, the bond angle spanned by the six-membered amino acid rings of $EDDS³$ is almost certainly greater than the bond angle spanned by the corresponding glycinate rings of EDTA.¹² Dissymmetric donor atom distortions have been shown to have a major effect on the CD spectra of tris(diamine)- and tris(dicarboxylato)cobalt(III) complexes. *l3* It is concluded, then, that the major differences between the CD spectra of $[Co(EDTA)]$ ⁻ and $[Co(EDDS)]$ ⁻ are due to changes in chelate ring size as postulated by Legg and Neal.⁶

While N, N' -dimethyl substitution of $[Co(\text{EDDS})]$ ⁻ does not cause the CD spectrum to approach that of $[Co(EDTA)]$, the spectrum does become even more similar to that of $[Co(EDDDA)]$ ^{$-$} (Figure 3). This is consistent with the above deductions since $[Co(DMEDDS)]$ ⁻ and $[Co(EDDDA)]$ ⁻ not only have similar environments about the nitrogens but have a similar arrangement of like-sized chelate rings. The absolute configuration assignment of the [Co(EDDDA)] optical isomers by Byers and $Douglas⁷$ is also supported.

Acknowledgment. The authors are grateful to Mr. Michael H. West of this laboratory who supplied the H_4EDDS used as a starting material. Acknowledgment is made to the donors

^(1 1) J. I. Legg and D. W. Cooke, *J. Amer. Ckem. SOC.,* 89, 6854 (1967).

⁽¹²⁾ H. A. Wiekliem and J. L. Hoard, *J. Amer. Chem. Soc.*, 81, 549 (1959).

⁽¹³⁾ K. R. Butler and M. R. *Snow,Inorg. Ckem.,* **IO,** 1838 (1971), and references therein; M. R. Snow and K. R. Butler, *Proc. Int. Conf. Coord. Chem.,* **14,** 390 (1972).

of the Petroleum Research Fund, administered by the American Chemical Society, the National Science Foundation (Grant GP-34490X), and the National Institutes of Health (Grant GM 18983-01) for support of this research.

51540-59-1; Na[Co(EDDS)], 21670-224. Registry No. **Na[Co(MEDDS)], 51540-58-0; Na[Co(DMEDDS)],**

> **Contribution** from **the Inorganic Chemistry Laboratory, University** of **Oxford, Oxford, OX1 3QR, England**

Valence Delocalization Coefficients for $[(NH_3)_5Ru^{II}(pyr)Ru^{III}(NH_3)_5]^{5+}$

B. **Mayoh and P. Day***

Received October *IO, 1973* **AIC30748P**

The electronic absorption' and Mossbauer spectra' of $[(NH₃)₅Ru(pyr)Ru(NH₃)₅]⁵⁺ (pyr = pyrazine) suggest very$ strongly that, despite the fact that the ligands surrounding them are identical, the environments of the two Ru atoms differ in such a way that one may be considered to a first approximation as Ru^{II} and the other as Ru^{III} ; *i.e.*, the complex is a class II^3 mixed-valence system. We recently pointed out⁴ that this apparently surprising observation is capable of rationalization if the resonance interaction between the two equivalent valence structures $(Ru_1^{\text{H}}Ru_2^{\text{III}})$ and $(Ru_1^{\text{III}}-)$ $Ru₂$ ^{II}), where 1 and 2 are the two sites, is smaller than the energy needed to transfer an electron adiabatically from one site to the other. It is thus a matter of some interest to calculate rough values for the resonance interaction and hence the valence delocalization coefficients for this important model compound.

It is reasonable to suppose that since 1 and *2* are usually separated by quite a large distance in class I1 mixed-valence compounds (6.9 **A** in the Ru dimer), they do not interact directly but only through higher order perturbations involving nonorthogonal $\pi \rightarrow \text{Ru}^{\text{III}}$ and $\text{Ru}^{\text{II}} \rightarrow \pi^*$ charge-transfer states. This simple idea was recently set out within the general formalism of perturbation theory^{5,6} and applied with some sucess to Fe^{II} -Fe^{III} interactions in cyanides and silicates. The purpose of the present note is to apply it to the Ru^{II}-Ru^{III}-pyr dimer.

Consider the system

$$
Ru_1 - N_1
$$
 $\begin{cases} 3-4 \\ 1 \end{cases}$ $N_2 - Ru_2$ $\begin{cases} x \\ 2 \end{cases}$

and assume that valence delocalization between the lowspin metal ions occurs only *via* the π , π^* molecular orbitals of the bridging pyrazine. The component of the zerothorder ground state in which the unpaired electron on Ru occupies d_{yz} may be written

- **(4) B. Mayoh and P. Day,** *J.* **Amer. Chem.** *SOC.,* **94,2885 (1972).**
- **(5) B. Mayoh and P. Day,** *J.* **Chem.** *Soc.,* **Dalton Trans., in press. (6) B. Mayoh, Ph.D. Thesis, Oxford, 1973.**

$$
\psi_0 = |yz_1\overline{yz_1}\pi y\overline{\pi y}yz_2|\psi_0' \qquad (1)
$$

where ψ_0' takes account of the remaining electrons in the d shells of Ru_1 and Ru_2 and the πMO 's of the pyrazine. The $Ru_1^{\Pi} \rightarrow Ru_2^{\Pi}$, $Ru_1^{\Pi} \rightarrow \pi^*$ and $\pi \rightarrow Ru_2^{\Pi}$ configurations are then

$$
\psi_1 = |yz_1\overline{yz}_2\pi y\overline{\pi y}yz_2|\psi_0' \qquad (2)
$$

$$
\psi_2 = |y z_1 \overline{\eta y} * \eta y \overline{\eta y} y z_2 | \psi_0' \tag{3}
$$

$$
\psi_3 = |yz_1yz_1\pi y\overline{yz_2}yz_2|\psi_0' \tag{4}
$$

The ground and $Ru^{II} \rightarrow Ru^{III}$ charge-transfer states are then formed as linear combinations of ψ_0 and ψ_1

$$
\Psi_{\mathbf{G}} = \psi_0 + \gamma_1 \psi_1 \tag{5}
$$

$$
\Psi_{\mathbf{E1}} = \psi_1 + \gamma_0' \psi_0 \tag{6}
$$

Taking into account all the pyrazine π , π ^{*} MO's, the valence delocalization coefficients are now given⁵ by

$$
\gamma_1 = \sum_{i=1,3} \frac{(yz_1|H|\pi i^*)(yz_2|H|\pi i^*)}{(E_{i+1} - E_0)(E_1 - E_0)} -
$$

$$
\sum_{i=1,3} \frac{(yz_1|H|\pi i)(yz_2|H|\pi i)}{(E_{i+4} - E_0)(E_1 - E_0)}
$$
(7)

$$
\gamma_0' = -\sum_{i=1,3} \frac{(yz_1 | H | \pi i^*)(yz_2 | H | \pi i^*)}{(E_{i+1} - E_1)(E_1 - E_0)} +
$$

$$
\sum_{i=1,3} \frac{(yz_1 | H | \pi i)(yz_2 | H | \pi i)}{(E_{i+4} - E_1)(E_1 - E_0)}
$$
(8)

where the πi label occupied π MO's of pyrazine in order of decreasing energy and πi^* the vacant π MO's in order of increasing energy. $(E_1 - E_0)$ is the energy of the Ru₁^{II} \rightarrow Ru_2 ^{III} configuration, $(E_{i+1} - E_0)$ that of $Ru_1^{\Pi} \rightarrow \pi i^*$, and $-E_0$) that of $\pi i \rightarrow Ru_2^{\text{III}}$. We express the integrals $(vz_1|H|\pi i^*), (yz_2|H|\pi i^*), (yz_1|H|\pi i),$ and $(yz_2|H|\pi i)$ in terms of MO coefficients $C_{i\alpha}$ and $C_{i\alpha}{}^*$ for pyrazine and Ru^{II.} $\rm N, Ru^{III}$ - $\rm N$ resonance integrals and then estimate the coefficients from a Pariser-Parr-Pople⁷ calculation⁶ on the pyrazine molecule .

The integral β (Ru^{II}-N) is chosen so that the application of first-order perturbation theory and the dipole length operator to the $Ru^{II} \rightarrow \pi i^*$ charge-transfer excitation yields the observed transition moment as

$$
\mu(\Psi_{G} \to \Psi_{E2}) = -\frac{2^{1/2}C_{11} * \beta(\text{RuII-N})R(\text{RuII-pyr})}{E_2 - E_0}
$$
(9)

From Creutz and Taube's work¹ we estimate that μ_{obsd} - $(\Psi_{\mathbf{G}} \to \Psi_{\mathbf{E2}})$ is about 1.12 e Å while $(E_2 - E_0)$ is set as the energy of the excitation $\Psi_G \rightarrow \Psi_{E2}$, again estimated from ref 1 as 17.7 kK. Finally, $R(RuII-pyr)$ is taken from structural data for related compounds' as 3.45 **A.** Applying eq 9 then yields a value of $\beta(\text{Ru}^{\text{II}}-N) = 7.75 \text{ kK}$, and for simplicity $\beta(Ru^{III}-N)$ is assigned the same value.

The configuration energy terms, $(E - E_0)$, are chosen by reference to both experimental and theoretical data. *(E,* - E_0) and $(E_2 - E_0)$ are equated to the energies of the RuII \rightarrow Ru^{III} and $Ru^{II} \rightarrow \pi 1$ ^{*} charge-transfer bands in the spectrum of the mixed-valence ion, while $(E_3 - E_0)$ and $(E_4 - E_0)$ are calculated from $(E_2 - E_0)$ using the approximate formula

- Orbital Theory," McGraw-Hill, New York, N. Y., 1970.

(8) P. J. Wheatley, Acta Crystallogr., 10, 282 (1957); P.-T. Cheng,
- **B. R. Lescher, and S. C. Nyburg,** *Inorg. Chem.***, 10, 1279 (1971).**

⁽¹⁾ *C.* **Creutz and H. Taube,** *J.* **Amer. Chem. Soc., 91, 3988 (1969); 95, 1086 (1973).**

⁽²⁾ *C.* **Creutz, M. L. Good, and S. Chandra,Znorg.** *Nucl.* **Chem. Lett., 9, 171 (1973).**

⁽³⁾ M. B. Robin and P. Day, Advan. Inorg. Chem. Radiochem., 10,247 (1967).

⁽⁷⁾ J. A. Pople and D. L. Beveridge, "Approximate Molecular